Quotients of Finite-dimensional Quasi-normed Spaces
نویسندگان
چکیده
We study the existence of cubic quotients of finite-dimensional quasi-normed spaces, that is, quotients well isomorphic to `∞ for some k. We give two results of this nature. The first guarantees a proportional dimensional cubic quotient when the envelope is cubic; the second gives an estimate for the size of a cubic quotient in terms of a measure of nonconvexity of the quasi-norm.
منابع مشابه
Implicit iteration approximation for a finite family of asymptotically quasi-pseudocontractive type mappings
In this paper, strong convergence theorems of Ishikawa type implicit iteration process with errors for a finite family of asymptotically nonexpansive in the intermediate sense and asymptotically quasi-pseudocontractive type mappings in normed linear spaces are established by using a new analytical method, which essentially improve and extend some recent results obtained by Yang ...
متن کاملSOME RESULTS ON INTUITIONISTIC FUZZY SPACES
In this paper we define intuitionistic fuzzy metric and normedspaces. We first consider finite dimensional intuitionistic fuzzy normed spacesand prove several theorems about completeness, compactness and weak convergencein these spaces. In section 3 we define the intuitionistic fuzzy quotientnorm and study completeness and review some fundamental theorems. Finally,we consider some properties of...
متن کاملSaturating Constructions for Normed Spaces II
We prove several results of the following type: given finite dimensional normed space V possessing certain geometric property there exists another space X having the same property and such that (1) log dimX = O(log dimV ) and (2) every subspace of X, whose dimension is not “too small,” contains a further wellcomplemented subspace nearly isometric to V . This sheds new light on the structure of ...
متن کاملSaturating Constructions for Normed Spaces
We prove several results of the following type: given finite dimensional normed space V there exists another space X with log dimX = O(log dimV ) and such that every subspace (or quotient) of X, whose dimension is not “too small,” contains a further subspace isometric to V . This sheds new light on the structure of such large subspaces or quotients (resp., large sections or projections of conve...
متن کاملFinite Dimensional Generating Spaces of Quasi-Norm Family
In this paper,~some results on finite dimensional generating spaces of quasi-norm family are established.~The idea of equivalent quasi-norm families is introduced.~Riesz lemma is established in this space.~Finally,~we re-define B-S fuzzy norm and prove that it induces a generating space of quasi-norm family.
متن کامل